

Wladek Walukiewicz

Lawrence Berkeley National Laboratory, Berkeley CA In collaboration with EMAT-Solar group http://emat-solar.lbl.gov/

Valence Band Anticrossing in III-Bi-V Alloys

University of California

J. Ager, K. M. Yu, Liliental-Weber, J. Denlinger, O. Dubon, E. E. Haller, J. Wu LBNL and UC Berkeley

K. Alberi, X. Li, D. Speaks, M. Mayer, R. Broesler, A. Levander Students, UC Berkeley

Collaborations

- J. Geisz, NREL (InGaAs(N))
- **C. Tu**, UCSD (GaP(N), InP(N))
- C. Skierbiszewski, Unipres (InGaAs(N))
- **A. Ramdas**, Purdue University (ZnTe(Se), ZnTe(S)..)
- I. K. Sou, UST, Hong Kong (ZnSe(Te), ZnS(Te))
- I. Suemune, (Hokkaido University) (InGaAs(N))
- T. Kuech, University of Wisconsin (GaN(As))
- Y. Nabetani, University of Yamanashi (ZnSe(O), ZnTe(O))
- J. A Gupta, NRC, Canada (GaAs(Sb))
- S. Watkins, Simon Frasier (GaAs(Sb))
- A. Krotkus, SRI, Vilnius (GaAs(Bi)
- J. Blacksberg, JPL (Ge(Sn))
- T. Foxon, S. Novikov, University of Nottingham (GaN(As))
- J. Furdyna, University of Notre Dame (GaAs(Mn))

Outline

- Highly Mismatched Semiconductor Alloys
- Conduction and Valence Band Anticrossing
- Key examples of highly mismatched alloys (HMAs)
 - GaN_xAs_{1-x}
 - ZnO_xSe_{1-x}
- Group III-Bi-V highly mismatched alloys
- Electronic Band Structure Engineering of HMAs
- Potential applications of HMAs (including bismides)
- Conclusions and outlook

Normal alloying: well matched alloys

Relatively easy to grow in the whole composition range Small deviations from linear interpolation between end point compounds

Anion Site Alloys

Electronegativities, X and atomic radii, R

IV	V	VI
С	N	Ο
2.6	X=3.0	X=3.4
	R=0.075 nm	R=0.073 nm
Si	Р	S
1.9	X=2.2	X=2.6
	R=0.12 nm	R=0.11 nm
Ge	As	Se
1.9	X=2.2	X=2.6
	R=0.13 nm	R=0.12 nm
Sn	Sb	Те
2.0	2.1	2.1
	R=0.14 nm	R=0.14 nm

- A large variety of potential alloys.
- Well matched alloys: replacing atoms with similar properties
- What happens when As is replaced with very much different N or Se with O?

III-Vs and II-VIs HMAs

Drastic deviation from linear interpolation between end point compounds

W. Shan, et. al., J. Phys.: Condens Matter, **16** S3355 (2004) W. Shan, et. al., Appl. Phys. Lett., **83**, 299 (2003)

Band Anticrossing in HMA: Dilute nitride alloys: GaAs_{1-x}N_x

- Interaction of localized N levels with extended states of the conduction band.
- Homogenous broadening within coherent potential approximation

W. Shan etl al., Phys. Rev. Lett. 82, 1221-1224 (1999); J. Wu et al. Semicon. Sci. Technol. 17, 862 (2002).

Highly mismatched Alloys

Electronegativities, X and atomic radii, R

IV	V	VI
С	N	0
2.6	X=3.0	X=3.4
	R=0.075 nm	R=0.073 nm
Si	Р	S
1.9	X=2.2	X=2.6
	R=0.12 nm	R=0.11 nm
Ge	As	Se
1.9	X=2.2	X=2.6
	R=0.13 nm	R=0.12 nm
Sn	Sb	Те
2.0	2.1	2.1
	R=0.14 nm	R=0.14 nm

- A large variety of potential highly mismatched alloys.
 III-N_x-V_{1-x}
 II-O_x-VI_{1-x}
- Compared to normal alloys, they are difficult to synthesize
- *Require non-equilibrium synthesis*

Synthesis of HMAs by ion implantation and pulsed laser melting (II-PLM)

Time Resolved Reflectivity

- Lliquid phase epitaxy at submicrosecond time scales
- Supersaturation of implanted species
- Suppression of secondary phases

Alloys with local level below the direct CBE

Oxygen level in ZnTe and MnTe is ~0.2 eV <u>below</u> the conduction band (CB) edge Can it be used to form a sparate band?

Intermediate Band Zn_{1-y}Mn_yO_xTe_{1-x} by PLM

An isolated intermediate band is formed in ZnMnTe_{1-x}O_x

K. M. Yu et al., Phys. Rev. Lett., 91, 246403-1 (2003)

Highly Mismatched Alloy Valence Band Anticrossing (VBAC)

IV	V	VI
С	N	0
2.6	X=3.0	X=3.4
	R=0.075	R=0.073 nm
	nm	
Si	Р	S
1.9	X=2.2	X=2.6
	R=0.12 nm	R=0.11 nm
Ge	As	Se
1.9	X=2.2	X=2.6
	R=0.13 nm	R=0.12 nm
Sn	Sb	Те
2.0	2.1	2.1
	R=0.14 nm	R=0.14 nm

Electronegativities, X and atomic radii, R

- Highly electronegative anions are partially replaced with more metallic isovalent atoms e. g. N-rich GaN_{1-x}As_x
- The metallic atoms form localized states close to the valence band that interact with the valence band

Band anticrossing in the whole composition range: GaNAs

HMAs over a wide composition range

GaN_{1-x}As_x alloys over the entire composition range were grown by a highly non-equilibrium synthesis method: low temperatures plasma-assisted MBE

- Alloys are amorphous for 0.15<x<0.8
- Sharp optical absorption gives well-defined bandgaps
- Bandgap and band edge tunable in a broad range

Red curve: BAC prediction J. Wu, et. al., Phys. Rev. B **70**, 115214 (2004).

ZnO_xSe_{1-x}: Electronic Structure

Blue curve: weighted interpolation of CBAC (Se-rich) and VBAC O-rich

Optical Properties of GaBi_xAs_{1-x}

Band gap and spin orbit splitting energies

Large bandgap reduction with increase in impurity concentration

Giant spin orbit bowing*

Not readily explained by the virtual crystal approximation (VCA)

Apply a valence band anticrossing (VBAC) model to understand the origin of the bowing in bandgap and spin orbit splitting energies in GaBi_xAs_{1-x}

Bismuth Level in III-V Compounds

Valence Band Anticrossing in GaBi_xAs_{1-x}

Bi Defect Levels in GaAs

Impurities of low ionization energy

Defect states located near the valence band

Anticrossing interaction between host and impurity *p*-like states

Bi introduces 6 *p*-like localized states

Valence Band Anticrossing Hamiltonian

12x12 matrix, Six valence bands and six p-symmetry impurity states

$$\alpha = \sqrt{3} \frac{\hbar^2}{m_0} [k_z (k_x - ik_y) \gamma_3], \qquad \beta = \frac{\sqrt{3}}{2} \frac{\hbar^2}{m_0} [(k_x^2 - k_y^2) \gamma_2 - 2ik_x k_y \gamma_3], \qquad V = C_A \sqrt{x}.$$

Valence Band Anticrossing Model

Interaction described by a 12 x 12 Hamiltonian

Restructured valence band

HH-like (E_{+} and E_{-}) LH-like (E_{+} and E_{-})

 $|E_{\perp}$ SO-like (E_{\perp} and E_{\perp})

Photomodulated Reflectance of GaBi_xAs_{1-x}

Restructuring of the Valence Band in GaBi_xAs_{1-x}

Bandgap bowing in $GaBi_xAs_{1-x}$ is due to the upward movement of the valence band edge

Bandgap and Spin Orbit Splitting Energies

Bandgap and Spin-Orbit Splitting Energies

Bandgap Energy Decreases by ~90 meV per x = 0.01

Spin-Orbit Splitting Energy Increases by \sim 50 meV per x = 0.01

Bismuth in III-Nitrides: GaN_{1-x}Bi_x

Band Structure Engineering of HMAs

- Localized level above CBE and interaction with CB
 - GaAs(N), ZnSe(O), CdTe(O)
 - Localized level below CBE and interaction with CB
 - GaAsP(N), ZnTe(O)
 - Localized level above VBE and interaction with VB
 - GaN(As), GaN(Bi), ZnO(Se),
 ZnSe(Te), ZnS(Te), GaAs(Mn)
 - Localized level below VBE and interaction with VB
 - GaAs(Bi), GaAs(Sb), Ge(Sn)

Highly Mismatched Alloys for Intermediate Band Cells

The intermediate band serves as a "stepping stone" to transfer electrons from the valence to conduction band.

Photons from broad energy range are absorbed and participate in generation of current.

Major technological advantage: requires single p/n junction only

Two small energy photons produce single electron-hole pair contributing to large V_{oc}

Photoelectrochemical Cells (PECs)

Material requirements

- Band gap must be at least 1.8-2.0 eV but small enough to absorb most sunlight
- Band edges must straddle Redox potentials
- Fast charge transfer
- Stable in aqueous solution

Group III-Nitride PECs (GaN_{1-x}Sb_x)

Bi level too high but Sb level lies low enough below oxygen redox potential H₂O/O

Ferromagnetic coupling in Ga_{1-y}Mn_yN_{1-x}Bi_x?

Energy level of the Mn impurity is expected to lie close to the Bi level.

Strong coupling between Mn holes and the Bi derived valence band

Conclusions and Outlook

Conclusions

- A large number of HMAs synthesized and studied.
- Electronic band structure described by the band anticrossing model.
- HMAs allow for an independent control of the location of CBE and VBE.
- Band anticrossing for electrically active impurities (III-Mn-Vs).

Outlook

- Potential applications for solar power conversion devices.
- HMAs for controlled ferromagnetic coupling.
- GaInNAs based photoelectrochemical cells.
- Energy selective contacts for hot electron solar cells.

Key role of highly mismatched III-Bi-V alloys